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Exemplar jetted engine-driven SN: long-duration GRB

Vela 4a Event — July 2, 1967  Observations:
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GRB Fireball Model
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Off-axis GRBs
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Low Lorentz factor (mass loaded): “dirty fireball”
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“Failed” or “choked” jets

A mildly relativistillé ((‘ Shock

shock breakout

~10"cm 1013104 cm
An Ultra-Relativistic jet
Penetrates the core — choked in the extended material

Figure modified from Nakar (2015)
Other references: Mészaros & Waxman (2001), Lazzati et al. (2012), Sobacchi et al. (2017)



The Zoo of Jetted and/or Engine-driven SNe

- Low-luminosity GRBs (e.g., GRB 980425 / SN1998bw)
- Ultra-long Duration GRBs

- X-ray Flashes (HETE-2)

- Fast X-ray Transients (Chandra, SRG/eROSITA)

- Fast Blue Optical Transients (e.g., AT2018cow)

- “Hypernovae” (Ic-BL SNe)

- Superluminous supernovae

- “Orphan” optical afterglows

- Radio-loud SNe (e.g., SN2009bb)

- Luminous radio transients in the local universe



Fundamental Questions (B-Q2 & Q3, G-Q1 & Q2)

O oA W~

GRB progenitor channel(s) (~0.1% CC SNe, no H/He)
Diversity of jetted supernovae (GRB-SN connection)
Rates / prevalence (r-process, SN mechanism)
Central engine (NS or BH) & jet launch

Jet composition, structure, propagation

Relativistic shocks, particle acceleration
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Dirty Fireballs and Off-axis Jets

Several observational approaches:

Search for “bursts” at lower energies (easiest in X-ray)
— dirty fireballs

Search for orphan afterglows at early times (easiest in optical)
— dirty fireballs and marginally off-axis GRBs

Search for orphan afterglows at late times (easiest in radio)
— highly off-axis GRBs

(“Orphan” afterglow: one without accompanying prompt emission)



X-Ray Candidates

Several archival Chandra X-ray transients have been reported
(Quirola-Vasquez+2022, Lin+2022), some plausibly cosmological
¢ Rise times ~10-1000 sec (too slow for GRB, too fast for dirty FB?)

e Host (candidates) all very faint - no firm redshifts known
¢ [nterpretation still unclear

SRG/eROSITA should be very efficient at finding afterglows
(Khabibullin+2012, Ghirlanda+2015)

e Sparingly few reported? (One GCN: GRB200120A)
e [False positives likely a challenge

MAXI and HETE-2 have detected GRBs with Epk < 25 keV
(“XRFs”) in modest numbers, some apparently cosmological (e.g.
Stratta+2007) - not clear if rate dominates GRBs or if [ is low



Optical Candidates

Many discoveries of cosmological transients from ground-based
surveys (IPTF, ATLAS, ZTF) — many with confirmed redshifts and

extensive follow-up (Ho+2020,2022)

e About half have (known) GRB associations, the others do not

e Apparent “orphans” could still be
missed/underluminous GRBS,
GRBs seen off axis, or could be
dirty fireballs

Serendipitous TESS observations

of one event hint at a slow rise time,

but also consistent with rapid rise
(Perley+2022 in prep)
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Radio Candidates

One promising off-axis afterglow candidate: FIRST J1419+3940

(from VLA; Law+2018, Mooley+2022)

Luminosity, host, evolution all consistent with off-axis GRB in 2003
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Dirty Fireballs & Off-axis Afterglows

No firm evidence yet that dirty fireballs are common.

If outflow energy & physics are similar to GRBs, rate is limited to

< few x GRB rate (Ho+2022)
Rate could be higher if characteristic E is lower, but if it’'s much lower
they are simply LLGRBS!

No firm constraint yet on GRB rate (or beaming) from off-axis
methods



What Observations are Needed

Multiwavelength, multi-cadence observations for a multiwavelength,
multi-cadence problem.

Gamma-rays / Hard X-rays:
More sensitive all-sky GRB coverage (to exclude GRB associations)

Soft X-rays:
Wide scan survey with rapid alerts to observers
Intermediate-FOV, high-sensitivity, fast-cadence survey at <25 keV
Continued fast-response X-ray facility (for follow-up)

Optical, radio: Wide/deep/fast surveys with rapid alert distribution;
Deep all-sky photo-z catalog (for cross-matching)



Multimessenger Prospects

GRBs do not appear to be prolific neutrino sources (Abbasi+2012,
Blaufuss+2013, Gao+2013)

Dirty fireballs may be more promising, if they exist (Mezsaros+2015)

GW radiation likely not detectable from LGRB progenitors
(out off-axis afterglow searches may also detect nearby
NS-NS mergers)
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Low-luminosity GRBs
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- Subluminous, smooth,

low EIoeak

- 10-100x more
common than GRBs?

1- 2-3 OOM smaller

relativistic E release

Kulkarni et al. (1998), Soderberg
et al. (2006), Cobb et al. (2006),
Liang et al. (2007), Guetta & Della
Valle (2007), Virgili et al. (2009),
Bromberg et al. (2011), Margutti et
al. (2013), Nakar (2015)



LLGRBSs: jet and/or shock breakout?

Low-luminosity jet?  Choked jet? Off-axis jet?

(£ LOZ+EmIsex
WoJj paljipo SUO0LIRD)

Kulkarni et al. (1998), Campana et al. (2006), Soderberg et al. (2006), Waxman et al.
(2007), Guetta & Della Valle (2007), Bromberg et al. (2011), Margutti et al. (2013), Nakar
(2015), Irwin & Chevalier (2016), Bromberg et al. 2018), Izzo et al. (2019)



Limitation: rate of discovery

- Inefficient discovery by existing GRB satellites
- Low Epeak, long duration, low luminosity
- Searches via the supernova (Type Ic-BL)
- Radio obs. of nearby lc-BL SNe

- High-cadence optical surveys



What observations are needed

-Discovery: wide-field detector optimized for low-luminosity,
long-duration bursts peaking in soft X-rays or UV
-Follow-up:
- Targeted X-ray (shock breakout, engine activity)
- UV (shock breakout/cooling)
- Multi-band optical (shock-cooling, supernova)
- Submillimeter & radio (relativistic ejecta)



Multimessenger prospects

Expect high-energy neutrinos
- Lower luminosity but more numerous than GRBs

- Choked jets
Prospects for detection in next decade
- Primarily diffuse background

- Maybe a coincidence at low-z
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Fast, Blue Optical Transients

e.g., Drout+ 2014, Tanaka+2016, Rest+2018,
Pursaianen+2018
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A distinct power source

Luminosity scales as
radioactive mass:

I‘SN, peak - |\/|56Ni

But timescale varies as ejecta
mass:
teyy ~ M
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Observationally heterogeneous

Cow-like
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Observationally heterogeneous
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m ATLAS target image_r ATLAS ref image -
AT 2018cow & kin  Ci%
g & a
Five well-studied events, AT20718cow is by . .
far the closest . .
Prentice+2018
- Very fast rise (2d), very luminous (-20 mag) .| yn Yao+2022 |

(Prentice+2018) [
* Persistently hot, featureless spectra at alll
phases, some narrow H+He late
(Perley+2019, Margutti+2019, Xiang+2021) . . . . . ! :
» Optically faint at late times — no SN bump e
(Perley+2018,2021) 20

* Low-mass star-forming hosts

(Coppejans+2018, Perley+2021,
Wiseman+2020, Lyman+2021)
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Ho+2019
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A Mystery Progenitor

« AlImost certainly engine-driven

» Requires substantial CSM

» Probably massive-star related

* Probably involves a stellar mass black hole
* Minimal radioactive elements released

Many theoretical models! (Failed/falloack SN, magnetar, WD

TDE, IMBH TDE, WD AIC, PPISN, common-envelope WR TDE...)

(prev. citations plus: Soker+2019, Yu+2019, Kuin+2019, Lyutikov+2019, Mohan+2020,
Uno+2020, Leung+2020, Kremer+2021, Xiang+2021, Metzger 2022)



What Observations are Needed

AT2018cow-like events are primarily UV transients - energetically
dominated by UV at all epochs; optical shows few features.

UV survey (<2d cadence) - Discover early, better constrain rise
UV follow-up - Needed at all phases to track energy output

UV spectroscopy - Better constrain composition and
nature of pre-explosion CSM

Also very luminous in X-rays, sometimes for months (AT2020mrf)
X-ray survey (3-30d cadence) - Find extremes of population
X-ray follow-up critical for confirming optical candidates

X-ray timing and spectroscopy provides + optical, radio surveys
unique insights (but sensitivity-limited) and photo-z catalogs



Multi-messenger prospects

Could be significant sources of neutrinos
(Fang+2019,2020, Guarini+2022)
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Jetted engine-driven explosions

LGRBs: stripped massive star, central engine, ultra-relativistic jet

Theoretical
- GRBs should be the tip of the iceberg: dirty fireballs, choked
jets, off-axis GRBs, different stellar progenitors, ...
- No bona fide discovery of these predicted phenomena

Observational
- Diverse phenomena (GRBs, LLGRBSs, XRFs, FBOTs, ...)
- Underlying physical connections (Lorentz factor, jet power,
progenitor size, viewing angle, ...) unclear



Critical time-domain/multi-wavelength observations

Sensitive all-sky GRB coverage

- High-cadence time-domain surveys w/ alerts:

- |Soft X-rays (~hours)

_ [UV (~day) J (+ optical & radio)
Rapid-response follow-up:

- X-ray pointed obs., also timing + spectroscopy
- UV imaging + spectroscopy

Deep all-sky photo-z catalog




Multi-messenger Prospects in the Next Decade

- Expect significant contribution to the HE diffuse
neutrino background from choked jets, LLGRBs
- If we're lucky, coincident event at low redshift



